Machine Learning for E-Commerce: OXID e-Shop

Just as Amazon knows which products you may be interested in buying, based on your past purchase-history, it should be possible for independent shop-owners to offer a more intelligent shopping-experience to their users.

As a E-Commerce technology service-provider, our mission is to bring sustainable technology-trends to merchants and E-Commerce agencies in Germany and Switzerland.

– In 2015, we added Shopware to our portfolio.
– In 2016, we worked hard on building a Multichannel E-Commerce Framework, including ERP capabilities based on odoo.
– In 2017, we are looking forward to adding Machine Learning capabilities for E-Commerce to our technology portfolio. This will immediately enhance our HyperSearch® capabilities, and give us new a business-spaces to play in.

Our efforts will primarily be structured around 3 problems:

Ranking Top Sellers

Based on the sum of order-data available in a database, we would like to derive the top-sellers on specific web-shops. Such a result can of course be derived using SQL database queries. But we intend to solve the same problem using Machine Learning techniques.

User Profiling

Based on user-behavior while on a specific web-shop, we’d like to profile the user, without the user having to log in. For example, we’d like to determine if a user is male or female without he/she telling us. Similarly, we’d like to guess the approximate spending capacity of the user, and promote products in that price-segment.

Trend List

Based on click-pattern of a user, we’d like to guess which type of products the user is interested in, and load those with a higher priority into the shop-interfaces. In other words, utilise ML to provide a highly relevant user-experience.

Demand Forecasting

Based on daily sales data, predict demand, and accordingly make purchase decisions.

HyperSearch® becomes Smarter

Our E-Commerce Search solution should get smarter by training the algorithm to learn keywords that humans type-in and the search-results they have selected to follow. Based on these, suggestion can be pre-loaded (below search-field).

The above learning can be correlated to purchase-data of articles, such that those that have been known to have been bought in the past can be promoted to the top of the SERP.

Of course, we are most keen to apply our solutions to our favorite E-Commerce product, the OXID E-Shop!

We invite friendly agencies to participate as a stakeholder in this research and reap the benefits from an early stage.

Resources

    1. Google Cloud ML Platform (Documentation)
    2. Google Prediction API
    3. Learning Works, As Explained By Google
    4. Machine Learning 101 – Supervised Learning
    5. Learning Machines 101: A Gentle Introduction to Artificial Intelligence and Machine Learning
    6. Machine Learning is Fun!
    7. BIG ML- Machine Learning 101
    8. Essentials of Machine Learning Algorithms (with Python and R Codes)
    9. Simple Sample Program. After understanding basics of theory, try this code.
    10. 50 Useful Machine Learning & Prediction APIs
    11. Amazon Machine Learning – Developer Guide
    12. Quora answers on Applications of Machine Learning in E-Commerce. 
    13. Stanford Univ. MOOC by Prof. Andrew Ng – Machine Learning
    14. Building Machine Learning Predictive Model – Data-Sailors.com

Important Concepts

    • Model, Parameters & Learner
    • Gradient Descent, Learning-rate
    • Neural Networks
    • Binary, multiclass, regression classifications
    • Algorithms
    • Validation dataset
    • Supervised vs. Unsupervised learning
    • Reinforced learning